
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Vehicular Networks Simulation with
Realistic Physics
ESTEBAN EGEA-LOPEZ1, FERNANDO LOSILLA1, JUAN PASCUAL-GARCIA1 AND JOSE
MARIA MOLINA-GARCIA-PARDO1
1Department of Information Technologies and Communications, Universidad Politécnica de Cartagena (UPCT), Cartagena, 30202, Spain, (e-mail: {esteban.egea,
fernando.losilla, juan.pascual, josemaria.molina}@upct.es)

Corresponding author: Esteban Egea-Lopez (e-mail: esteban.egea@ upct.es).

This work was supported by the Spain Ministerio de Economía, Industria y Competitividad under grants TEC2016-76465-C2-1-R and
TEC2016-78028-C3-2-P.

ABSTRACT Evaluation of cooperative automated driving applications requires the capability of simulat-
ing the vehicle and traffic dynamics as well as the communications with a level of accuracy that most of
current tools still lack. In this paper we explore the use of game engines in hybrid traffic-network simulators.
We describe and validate a novel framework based on this approach: Veneris. Our framework is made of a
traffic simulator, implemented on top of the Unity game engine, which includes a realistic vehicle model and
a set of driving and lane change behaviours adapted to a 3D environment that reproduce real-world traffic
dynamics; a ray-launching propagation simulator on graphics-processing-unit (GPU), called Opal, and a set
of modules which enable bidirectional coupling with the OMNET++ network simulator. The more relevant
and novel mechanisms of Veneris are introduced, but further implementation details can be checked on the
source code provided in our repository. We discuss the validation tests we have performed and show how it
provides accurate results in three key areas: the fidelity of the vehicle dynamics, the recreation of realistic
traffic flows and the accuracy of the propagation simulation. In addition, general results of the expected
performance are provided.

INDEX TERMS Game engine, GPU, radio propagation, ray tracing, simulation, traffic, vehicular networks.

I. INTRODUCTION
Connected vehicles extend the capabilities of multiple ad-
vanced driver-assistance systems and automated vehicles by
enabling the possibility to perform cooperative actions (Co-
operative Automated Driving, CAD) or increase the aware-
ness of the vehicle sensor systems [1]. CAD can improve
safety and efficiency, by introducing Cooperative Adaptive
Cruise Control (CACC) applications [2], including not only
platoon driving, but also cooperative collision avoidance [3]
and others. CAD, however, requires further research before
being deployed [1], [2] and simulation is a key tool for its
desig and evaluation, because of both the safety-critical fea-
tures of the applications and the cost and resources required
for real test and validation.

Evaluation of CAD applications requires the capability of
simulating both the vehicle and traffic dynamics as well as
the communications. The level of realistic detail of the sim-
ulation determines the kind of application that can be tested.
On the one hand, tools for simulation of highly realistic
driver behaviour, vehicle dynamics and sensors [4], called

nanoscopic vehicle simulators, are available but, due to their
cost, are used mainly by the automotive industry and very
specialised research groups and are limited by the number
of simulated vehicles that can handle [5]. On the other hand,
there are a number of traffic [6] and network [7] simulation
tools currently available for the general research community.
After being focused on their respective domains, a number of
new frameworks have combined them into so called hybrid
simulators [8] in the last decade.

However, most of them still lack the level of detail to
perform accurate simulations of many CAD applications,
as discussed in several similar prior works [5], [9], [10].
In particular, microscopic traffic simulators, which use car-
following models, do not reproduce realistic vehicle dynam-
ics. Consider as a representative example the simulation of
safety and emergency applications: microscopic simulators
are not directly suitable to model accidents because they
use mobility models that are specifically designed to avoid
vehicle crashes. Therefore, those models have to be at least
modified properly, which is actually a subtle task, as dis-

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

cussed in our previous work [11], and makes difficult setting
up controlled experiments.

Moreover, in the emergency case, the issue is not just to be
able to hack a car-following model to allow the occurrence
of collisions but to reproduce realistically the dynamics of a
vehicle in a collision or during an evasive maneuver. Another
characteristic example is CACC; in this case, more realistic
longitudinal dynamics have been introduced in some tools
[10], but the lateral dynamics should also be taken into
account in many applications of interest, such as cooperative
merging, or more obviously, if one is interested in the safety
of cooperative lane changing, for instance.

Highly accurate physical behavior can be incorporated
with the use of physics engines, which are simulation tools
already used in robotics and other fields [12]. However,
direct integration of dedicated physics engines in current
traffic tools is not trivial and possibly not even advisable,
due to the different goals of both approaches. Recent solu-
tions include extending microscopic simulators with more
physically realistic but still simplified models [10] or using
the physics engine indirectly via an interface provided by
robot simulators, coupling network and robot simulator in
another type of hybrid simulator [9]. The result is, in the first
case, only a limited increase in physical accuracy and, in the
second case, the loss of the capability of reproducing realistic
traffic patterns, unless the car-following, lane-changing and
other features of traffic simulators are reimplemented for the
robot simulator.

There is an alternative, not yet fully explored and evalu-
ated. Game engines [13], [14], mainly focused on render-
ing, also include powerful physics engines. Although they
have been traditionally proprietary software, many have been
made available to the public in the last years, and have
become increasingly used in several areas of research. Com-
bining network simulators and game engines provides an
alternative type of hybrid simulator for CAD research. This
solution is similar to the robot-network hybrid simulation
previously discussed [9] and in fact suffers the same prob-
lem: the need to reimplement traffic models. But the use
of game engines brings additional possibilities and advan-
tages: their capabilities as general-purpose three-dimensional
(3D) simulations [13], with rich interactivity between the
components and, in particular, with the users, supporting
seamlessly human-in-the-loop simulations; as well as very
flexible development interfaces, intuitive graphical design
and multi-platform support.

The 3D representational capability gives game engines a
clear advantage over other alternatives with respect to the
other area where the network aspect of CAD simulations
can be improved: radio propagation. Communications have
a key influence on the stability of CACC [15] and other
CAD applications, which require accurate radio modeling.
Indeed, the simulation of propagation mechanisms with high
fidelity requires as a previous step the capability to build 3D
models of the scenario [16], [17], but network simulators do
not usually provide it. Moreover, the most accurate methods,

those based on ray tracing [16], [17], have been usually too
computationally costly to be used in large and dynamic sce-
narios [17], and so networks simulators usually only provide
stochastic or simplified hybrid methods [17]. However, in
recent years the computational power of graphics processing
units (GPU) has been leveraged to simulate propagation [16],
[18] at a much more reasonable computational cost. This ap-
proach also favors game engine over other alternatives, since
they integrate in one or another form GPU programming
capabilities. That is, game engines can be used to seamlessly
bring 3D models and GPU offloading to network simulators.

In this paper we explore this alternative, that is, the use
of game engines in hybrid traffic-network simulators. We
describe and validate a novel framework based on this ap-
proach: Veneris, short for Vehicular Networks Simulator with
Realistic Physics. Our framework is made of (1) a traffic
simulator, implemented on top of the Unity game engine
[14], which includes a realistic vehicle model and a set
of driving and lane change behaviours that reproduce the
traffic dynamics; (2) a ray-launching GPU based propagation
simulator, called Opal, and (3) a set of modules which en-
able bidirectional coupling with the widely used OMNET++
network simulator [7]. The more relevant features of the
framework are described and discussed in relation to the
related work. In particular, we introduce a novel duplicate ray
filtering algorithm for ray-launching methods; a lane change
selection mechanism based on cost-functions and adapt the
IDM [19] and MOBIL [20] models to a 3D environment.

We provide the research community with a flexible tool
for realistic testing of CAD applications. The source code
of Veneris is freely available at our repository1, where all
the implementations details can be checked. In addition, the
scenarios used for the validation can be downloaded and
executed.

In Section II, we further motivate our work and discuss the
aforementioned issues and related works. In Section III we
describe the framework components, and discuss the more
relevant features and novel mechanisms introduced. The key
aspects of Veneris, that is, the fidelity of the vehicle dynam-
ics, the recreation of realistic traffic flows and the accuracy
of the propagation simulation are validated in Section IV.
Conclusions are summarized in Section V.

II. RELATED WORK
High fidelity tools with software, driver, vehicle and hard-
ware in-the-loop [4] are used by the automotive industry.
Due to their proprietary nature and high cost, in this work we
focus our discussion on freely available tools for the general
CAD research community.

Hybrid traffic-network simulators interact bidirectionally
by exchanging messages. Widely used tools such as Veins,
iTETRIS or VSimRTI, have been discussed in [8]. All of
them use a car-following based microscopic traffic simulator,
either SUMO [6] or VISSIM [8]. Extending them with real-

1http://pcacribia.upct.es/veneris

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

istic physics, although possible in a limited way as in [10],
is complex, and in fact may disable their main advantage:
these tools use a simple unidimensional (1D) representation
of vehicles and scenarios which allow them to cope with
thousands of vehicles simultaneously. Introducing a 3D phys-
ically constrained representation of vehicles and scenarios
would also require an almost complete rewriting of the
code. Extensions of current tools include Plexe [10], which
extends both Veins and SUMO with CACC controllers and
a more realistic engine model, though limited to longitudinal
dynamics.

Physics engines have been used for vehicle dynamics in
[9], where authors couple the network simulator ns-3 and the
robot simulator Webots in a new hybrid simulator. However,
the robot simulator does not include adequate driving and
lane changing behaviours and provides only limited capa-
bilities for scenario building. Therefore, this approach is
useful to study CAD applications only in simple scenarios.
When using a physics engine on a small scale we obtain
more physically correct results in the simulation, but it is
not clear if they are still representative on a larger scale. To
answer that question, unlike in [9], in this work we not only
couple the network and vehicle simulator but also implement
widely used car-following [19] and lane changing models
[20], adapting them for 3D environments. We also test and
validate our implementation by comparing our results with
real traffic data in Section IV-B. The validation of synthetic
mobility traces is difficult [21], due the lack of available
real traces [22]. We have followed a methodology similar to
the one proposed in [23] based on publicly available data,
provided by the navigation and directions services of Google
[24].

Game engines are increasingly been used in diverse re-
search fields [13], mainly in artificial intelligence and com-
puter vision [25], due to their flexibility to build interactive
3D environments. Among the available engines, we have
used here Unity [14], a popular game engine, due to its mod-
erate learning curve and multiplatform support. It has been
used in similar studies, as in [26], where authors characterize
the channel of vehicular communications. However, they
use directly the ray tracing capabilities of the Unity engine,
which use the CPU, remarkably affecting the performance
and the scalability. On the contrary, with Opal, we offload
the ray tracing to the GPU, using NVIDIA Optix [27], an
optimized library for parallel ray tracing on the GPU, while
using the CPU for traffic simulation.

Ray launching methods for propagation simulation go
back several decades, but recent advances including the use
of GPU are discussed in [16]. Such techniques are one of the
most accurate tools to estimate the propagation phenomena,
but their computational cost has been traditionally a barrier
for their use, so network simulators use mainly stochastic
models [8]. There are hybrid models, such as GEMV2 [17],
where a simplified representation of the objects, just the
outlines of buildings, is used together with stochastic meth-
ods. The model is very specific, aimed at vehicular network

simulations, but the results reproduce real propagation ac-
curately at a reasonable cost. Our approach is general and
provides similar results with better performance. The most
similar work to Opal is found in [18], where authors also use
NVIDIA Optix to perform the ray tracing. Although similar
in several aspects, we use a different implementation and
introduce a novel ray duplication filtering mechanism, de-
scribed in Sect. III-D. Unlike Opal yet, they include diffrac-
tion but it is not addressed how it is integrated with higher
layer protocols.

In summary, although realistic vehicle dynamics and prop-
agation features have already been implemented to some ex-
tent previously in separated works, with Veneris we leverage
game engines to integrate them in a novel way and adapt
driving models to a 3D environment, providing a different hy-
brid framework. In the following sections we further discuss
and compare more particular details of Veneris with related
works.

III. VENERIS FRAMEWORK
In this section we describe and discuss the modules that make
up the Veneris framework. Veneris is made of a set of tools
that provide different functionality and can interact with each
other. The main components, shown in Fig. 1, are:

• Veneris simulator. A set of Unity [14] components that
provide a realistic microscopic road network simulation
in an interactive 3D environment. The components have
been grouped in functional modules. Builder compo-
nents are used to generated the scenario elements: roads,
intersections, traffic lights or buildings. Vehicle compo-
nents include a model of the dynamics of the vehicle
and components which model the behavior of the ve-
hicles on roads, intersections and the interaction with
other vehicles. Communication components implement
the communication with simulation modules. Managers
handle different aspects of the simulation globally.

• Opal. A ray-launching based, deterministic RF prop-
agation simulator, implemented in C++ with NVIDIA
Optix [27], a library and application framework for high
performance ray tracing on the GPU.

• Veneris OMNET++ modules. A set of OMNET++ and
INET [7] modules which enable bidirectional coupling
between the communication network and the traffic
simulation.

A. SIMULATION OVERVIEW
To get an overall view of the framework capabilities and
operation we describe the steps needed to set up a simulation
and the different types that can be run. The different types
and the tools involved are depicted in Fig. 2. The first step
is to set up a simulation scenario. Scenarios are created from
SUMO files (network, trips and polygons), which are usually
generated from real-world map data [6], for instance from
OpenStreetMap (OSM) [28], using the SUMO web wizard
tool. These files are used by the Veneris builders in the Unity
editor to generate the 3D representation of the scenario in a

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

OMNET++

INET

MODULES

VENERIS

SERVER

CUSTOM

SCHEDULER

UNITY 3D

BUILDERS
Network

Routes

Environment

VEHICLE
Behavior

Physical model

OPAL

MANAGER

VENERIS

OPAL

Ray Launcher

Plugin
Loaded

Library

Network/File

VENERIS

CLIENT

COMMS

MANAGERS
Simulation

Vehicles

FIGURE 1: Veneris main components . Opal can be used
as a standalone application, as a plugin with Veneris or
loaded with OMNET++. Veneris and OMNET++ communi-
cate through the network or by files.

Building scenario

SUMO

Files

Unity

executable

or editor

OpenStreetMap

Unidirectional hybrid simulation

Unity

executable

or editor

OMNET++

executable

File

Bidirectional hybrid simulation

Unity

executable

or editor

OMNET++

executable

TCP/IP

Opal

Opal
Electromagnetic

characterization

Unity

executable

or editor

Opal

FIGURE 2: Workflow and types of simulations with Veneris
and Opal. First, the scenario is built from real-world map
data. Then, three alternatives are available: (1) to carry out
the electromagnetic characterization of the scenario, just with
Opal; (2) to run a unidirectional hybrid simulation, where
the traffic simulation output is stored and then fed to the
OMNET++ modules; (3) to run a bidirectional simulation,
where traffic and network simulation are run simultaneously
and interact with each other.

Unity scene. A vehicle manager in charge of inserting vehi-
cles, according to the SUMO trip definitions, is also created.
These vehicles use the physical model described later in Sect.
III-C. A simulation manager as well as a number of additional
components, such as user interface (UI), cameras and statistic
recorders, can be added to the scene. At this point, a traffic
simulation can be run, either directly in the Unity editor or
after building an executable.

The next step is to perform a network simulation together
with the traffic simulation. Network simulation is provided
by OMNET++. To obtain a hybrid simulation, Veneris in-
teracts with a running OMNET++ simulation by sending
messages over a TCP connection. Basic messages include
vehicle state and synchronization information. The former

one is used to create, destroy and update the state (position
mainly) of the vehicle modules in the OMNET++ simulation.
The latter one keeps both simulations synchronized: Unity
uses a real-time simulation while OMNET++ is event-based.
Therefore, Veneris uses a custom scheduler to ensure that the
time of OMNET++ events never exceeds the current Unity
time. At this point we can perform a hybrid simulation, with
all the protocol stacks available for OMNET++ as well as its
propagation models.

Finally, we can use Opal to introduce more realistic
propagation results. Opal is loaded by OMNET++ modules
as an external library, as shown in Fig. 1. When Opal is
enabled, Veneris sends to OMNET++ messages with the
3D meshes of the scenario objects as well as the updated
transformation matrices of the moving objects, that are used
by Opal to create and update the scene graph that is later
ray-traced. Every time a packet is transmitted in OMNET++
the propagation is computed by Opal by in the GPU, taking
advantage of its parallel computation capabilities, and the
resulting received power is passed back to the receivers. The
result is a highly realistic simulation of the traffic dynamics
and electromagnetic wave propagation.

Alternatively, Opal can be directly used with Unity as a
plugin with a provided interface. This mode is useful to com-
pute the electromagnetic characterization of a scenario. For
instance, to simulate the coverage of a base station on some
city location obtained from real-world data. Another option
is to use Opal as a radio medium with OMNET++, without
using Veneris, which allow to simulate arbitary protocols
and models on a 3D-aware environment. Opal can also be
used as a stand-alone application, independently of Unity and
OMNET++.

B. VENERIS
Veneris implements a microscopic road network simulation
in an interactive 3D environment. It is implemented with the
Unity Engine, taking advantage of its rendering capabilities,
as well as its internal physics engine, provided by NVIDIA
PhysX [29]. The functionality provided can be summarized
in four major areas:

Scenario building and management. Veneris simulator
leverages the outstanding capabilities of the SUMO simulator
for generating road networks and traffic demands. The road
network, routes and environment are generated by builder
components from SUMO files (network, trips and polygon
files respectively). The SUMO network elements (edges,
lanes, junctions and connections) are translated into Unity 3D
components and grouped in game objects, which also include
a mesh renderer and a mesh collider. While the renderer is
only for visualization purposes, the collider actually provides
the physical interaction with other objects, such as the vehicle
wheels. For each road, one or more lane and path components
are added, which are used by the microscopic traffic model
and other behavior components. Finally, intersection compo-
nents which include stop lines and path connectors are also
inserted to be used by the behavior models.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

In addition, the trips generated by SUMO are imported by
a vehicle manager component, which assigns the routes to
vehicles and schedules them for insertion.

Vehicle dynamics. A realistic vehicle model has been
developed. It is described in detail in Sect. III-C.

Behavior models. They have been implemented as be-
havior trees and provide the core of the microscopic traffic
simulation. Each vehicle, in addition to the vehicle dynamics,
has an Agent responsible for controlling it. This Agent can
be a user via different input controllers, such as mouse,
keyboard or wheel and pedal set, although in general it is
an automated model. In the latter case, the agent is made of
different submodels:

• Path tracker. It makes the vehicle follow a path on a
lane. It is implemented with a proportional path tracker,
which makes the vehicle steer to a lookahead point at a
certain distance on the path.

• Car-following model. It describes the action of individ-
ual drivers in response to the surrounding traffic. We
have implemented a modified version of the Intelligent
Driver Model (IDM) [19]. This model sets the acceler-
ation of every vehicle as a function of the actual speed,
the net distance gap and the velocity difference with the
leading vehicle.

• Lane-changing model. We have adopted MOBIL [20],
an operational lane-changing model complementary
to IDM. We have only implemented strategical lane
changes at the moment, that is, vehicles only do the
changes required to follow their routes, and use MOBIL
to decide when to perform the change. As a conse-
quence, Veneris is not suitable to realistically simulate
highways where the discretionary lane changes have a
greater influence.

• Intersection behaviors. These models control the actions
of a vehicle when approaching and crossing intersec-
tions.

• Strategic planner. This component acts as a coordinator
and schedules other behaviours for running, such as
intersection behaviours found in the current road edge.
In addition, it is responsible for planning strategic lane
changes.

Communications. Components which handle the interac-
tion with external frameworks, such as OMNET++, via mes-
sage passing. Generated messages are efficiently serialized
with the Google flatbuffers library [30] and can be sent over
the network or saved to a file. Messages are passed every
physics update in Unity, every 20 ms by default though it
can be configured. Depending on the interaction mode, we
consider the following simulation types:

• Unidirectional. In this mode, the events in the net-
work simulation cannot alter the events in the traffic
simulation. The network simulation basically uses the
messages from the traffic simulation to update the posi-
tions of vehicles or other entities. Therefore, a network
simulation may also be run over a trace file from the

traffic simulation. Indeed, the messages can be directly
serialized to a file instead of the network, and used
to exactly replay the traffic simulation with different
network configurations. In this case, the simulation time
for Veneris can run faster and it just puts the messages
on a transfer queue and does not block.

• Bidirectional. Sometimes also called bidirectionally
coupled, the events in both the network and traffic sim-
ulations can alter each other state. OMNET++ also may
send messages to Veneris. In this case, both simulations
have to run synchronized, and, after sending messages,
Unity blocks until a reply from OMNET++ is received.

• Interactive. The traffic simulation reacts to external
events other than network ones. For instance, when there
is a vehicle controlled by a user. This mode can be used
with any of the other two. The requirement is to keep the
simulation responsive, that is, to keep a framerate high
enough to be considered acceptable by the user. For the
unidirectional mode, due to our type of simulation, the
framerate degrades usually with the load on the CPU,
whereas for the bidirectional mode, the framerate is also
limited by the performance of the network simulator
because of their synchronization.

We next describe briefly some of the more relevant features
or novel mechanisms introduced in Veneris. All the imple-
mentation details can be checked on the source code provided
in our repository.

Rich, interactive 3D environment. Unlike classical traf-
fic simulators, where vehicles are abstract point entities
changing their coordinates along lines representing lanes, in
Veneris the dynamical elements are 3D rigid bodies subject
to physical interactions and constraints, which has a num-
ber of implications on the implementation that have been
considered. For instance, turns at intersections must have a
turning radius large enough to let the vehicle do the maneuver
and it has to have a speed slow enough to avoid skidding.
In addition, vehicles can react to environment entities and
complex behaviors can be seamlessly introduced. In fact, the
strength of game engines lie in their ability to recreate rich
interactive environments and provide a number of tools, such
as mesh colliders and triggers, to facilitate its development.
Consider, for instance, a road area with a layer of ice where
vehicles can skid: programming such behavior in other tools
is remarkably complex, whereas with the Unity engine is just
a matter of placing a mesh trigger with the desired shape and
programming the action to be executed upon a vehicle enters,
stays or leaves the trigger area.

Human in the loop. The possibility of using human-
controlled vehicles enables the evaluation of scenarios
not usually or easily available for other tools, except for
nanoscopic simulations. For instance, for testing the relia-
bility of a CACC to longitudinal and lateral disturbances, a
user can perform arbitrary maneuvers, readily executed with
a commodity wheel and pedal set, but difficult to program
with other tools.

IDM adapted to 3D environment. IDM assumes a 1D con-

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

figuration where each vehicle follows another one on a line
and the acceleration is updated at every time step. We have
adapted it to our 3D environment as follows: (1) in our ve-
hicle model the acceleration cannot be directly set, but is the
result of the drive torque applied to the wheels. Instead, we
use the IDM acceleration function to set the input applied to
the acceleration pedal, so strong accelerations/decelerations
are mapped to throttle/brake pedal pressure; (2) selecting the
leading vehicle in a 3D environment is not as straightforward
as choosing the vehicle in front: a driver has to react to the ac-
tions of the relevant neighbors. Therefore, the leading vehicle
is set to the most relevant (dangerous) neighbor by computing
their trajectory intersection, that is, the neighbor that may
first collide with the vehicle if speed is kept constant. In
addition, to compute the velocity difference, we subtract only
the component of the velocity vector of the leader on the unit
direction vector of the vehicle.

Cost-based strategic lane change selection. The route gen-
erated by the SUMO tools and imported by the vehicle man-
ager only enumerates the connected road segments (edges)
that have to be traversed during the trip, but most of the edges
are made of several lanes. Therefore, on a strategical level a
vehicle has to choose the lane for each edge according to,
first, its connectivity to the next segment lanes, and second,
some desirable traffic condition, such as the occupancy of the
selected lane. The selection algorithm is not trivial and has a
remarkable influence on the traffic simulation. Our solution
is to use a cost function to select the desired lanes. The
cost function depends on some dynamical properties of the
lanes, such as the density (vehicles/m), occupancy (number
of vehicles), average speed on the lane, etc. Given the cost
function, we then select the minimum cost path on the set
of potentially usable lanes. To this purpose, a route manager
creates a global graph for the scenario where each lane is
a node which is linked with a vertex to all the connected
lanes in other segments and to all adjacent lanes. On this lane
graph, each vehicle runs a A* algorithm constrained on the
vehicle route, that is, only nodes (lanes) on the actual route
of the vehicle are considered in the search. The procedure
works because the route generated by SUMO previously
is feasible, that is, there exists actually a path traversing
the lanes between the origin and destination. The strategic
(mandatory) lane changes are scheduled according to the
minimum cost path found and they are later executed using
the MOBIL model. This procedure is repeated along the
route, to take into account the current traffic conditions in the
cost. In our implementation, the strategic planner component
keeps a plan for 3 road segments ahead, which is updated
every time a new road segment is reached. This cost approach
is flexible and allows the combination and testing of multiple
alternatives. As an example, we use as cost both the vehicle
density as well as the length of the target lane and vehicle
speed, to discourage changes to lanes where there is not
enough time to stop at the next intersection.

User provided intersection behavior. The behavior of ve-
hicles at intersections is critical for the correct simulation

of traffic but there is a wide variety of potential situations
to consider. Our approach to cope with this variety is to let
the intersection provide its own behavior control. That is, a
behaviour is attached to each intersection when the scenario
is built, and the strategic planner loads and runs the behavior
corresponding to the intersections found in the current road
segment. We have implemented basic actions (stop, turn with
priority, straight with priority, etc.) and traffic light rules,
but users can extend and test Veneris in a seamless way
by providing specialized behaviors for particular types of
intersections.

Visualization and multi-platform support. The use of a
game engine as a simulation platform allows to take ad-
vantage of its rendering capabilities for debug and result
analysis purposes. A number of visual aids can be added
to the simulations to help understand the behaviour of the
system and results can be directly rendered over the scene
after the simulation is done. Moreover, thanks to the multi-
platform support of Unity, simulations can be compiled for
different platforms. In particular, with WebGL traffic simula-
tions can directly be run on a web browser, which facilitates
the development of interactive scenarios for educational or
demonstration purposes. Some examples can be found on the
Veneris website.

C. VEHICLE
The vehicle model used in Veneris is a 15-DOF (Degrees
of Freedom) model, see Fig. 3, composed of a sprung mass
and four unsprung masses for the wheels. The sprung mass
comprises the chassis, frame, internal components, passen-
gers and cargo and it has six DOF that define the state of
the vehicle body. These include longitudinal, vertical, lateral,
yaw, pitch and yaw motion. In addition, each wheel has two
DOF, one of them for their vertical motion and the other for
the wheel spin. Finally, the steering system has another DOF.

The implementation of the vehicle model follows a mod-
ular approach where each of the main physical parts of
a vehicle (e.g. brakes, steering system, etc.) is associated
with a configurable software component. In this way, the
setup of a vehicle can be easily changed and its components
can be replaced by others using different models. Besides,
components can be extended with new functionality, since
the source code of components is available. Fig. 4 shows
the main components of the vehicle model, which model
the operation of typical real car parts [32]. In addition to
the components depicted in the figure, a vehicle controller
assembles the components and configures the vehicle in run-
time. Another component provides the inputs to the vehicle
(pedals, gear shift and steering wheel) from different devices,
such as the keyboard or an automated controller.

The powertrain component generates the drive torque that
will be delivered to the powered wheels. Inside the power-
train, the engine component calculates the torque it delivers
using a torque curve that takes the engine angular speed and
the throttle as input parameters. A clutch transfers this torque
to the drivetrain component, which couples the engine to the

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

FIGURE 3: 15-DOF vehicle model. The rotation of the front
wheels is a function of the steering wheel rotation calculated
according to an Ackermann steering geometry.

FIGURE 4: Main components of the vehicle model.

drive axle with the powered wheels, converting torque and
rotational speeds according to the selected gear. Brakes have
been modeled using a hydraulic braking system. The steering
system component uses an Ackermann steering geometry.
The suspension for each wheel is modeled as a mass-spring-
damper system, as was shown in Fig. 3. Each axis of the
vehicle has an anti-roll bar to reduce the amount of roll during
cornering. The tire model plays a major role in realistic sim-
ulation of vehicle dynamics. It determines the wheel traction
forces. Experimental results show that the tire force gener-
ated by each tire depends on the slip of the tire relative to the
road, the normal load on the tire and the friction coefficient of
the tire-road interface [33]. In Veneris, an existing component
from the NVIDIA PhysX [29] physics engine has been used
to simulate the wheels, including the suspension. This tire
model uses predefined longitudinal and lateral traction force
curves based on wheel slip, tire load and friction. It offers
satisfactory accuracy if these curves are adjusted to match the
operational conditions of the tire. Finally, the vehicle body is
modeled as a rigid body with adjustable center of mass and
moment of inertia. The rest of components exert forces on the
rigid boy that include traction, suspension and aerodynamic
drag forces. These forces are used to calculate linear and
angular accelerations along the axes corresponding to the six
DOF of the vehicle body and determine the translation and
rotation of the vehicle.

D. OPAL
Opal is a 3D ray-launching based, deterministic radio-
frequency propagation simulator. With Ray-launching meth-

FIGURE 5: Opal scene graph.

ods, also called shooting and bouncing (SBR), [16] elec-
tromagnetic waves are simulated by rays launched from
the transmitter with a predetermined angular spacing (AS).
These rays are propagated along their trajectory until they hit
an obstacle where they are reflected, diffracted, transmitted
or scattered. Subsequent rays are traced again. The contri-
butions of the different rays that hit a reception sphere on
the receiver are added to compute the electric field. The as-
sumed space discretization limits the accuracy of the method
compared to methods such as Ray-tracing, also called image
method [16].

Opal has been implemented in C++ with NVIDIA OptiX
[27], a general-purpose ray tracing engine for rendering,
designed for GPU and other highly parallel architectures.
The programming model of OptiX involves a host-based API
used to define data structures for ray tracing and a device-
based CUDA API, used to generate rays, intersect them with
surfaces and process those intersections, by calling user-
defined programs. Opal works with both static and mov-
ing 3D scene objects, represented as triangle meshes, and
multiple transmitter and receivers. Objects, transmitters and
receivers can be dynamically added and removed from the
scene and subsequent ray launches take into account those
changes.

With OptiX a scene is represented as a graph that controls
the traversals of rays through the scene [27]. Nodes usually
describe geometric objects, transforms and other data ob-
jects, such as acceleration structures, based on a bounding
volume hierarchy (BVH) [16], that improve the operations
on sets of geometrical objects. The structure of the scene
created by Opal is shown in Fig. 5. All the static objects in
the scene, such as buildings, share an acceleration structure
below the root node and are assigned an intersection program,
which computes ray-triangle (mesh) intersection, and one
or more materials and a closest hit program. The receivers,
represented as spheres, are attached just below the root node
and also share an acceleration structure. When they move,
their sphere coordinates are updated. Finally, the dynamical
geometrical objects, such as moving vehicles, which may be
made of several meshes, are assigned each one a transform
node, updated when the object moves, and their own acceler-
ation structure.

A user program associated to the closest hit for meshes

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

performs the operations required when a ray hits the geome-
try, such as reflections, diffractions and so on. In our case,
only reflections are implemented currently, so it computes
the reflected ray, the reflection coefficient and updates the
ray payload. The closest hit program for receivers filter
duplicates and adds the ray contributions to the electric field.

Every mesh added to the scene has its own electrical
properties (relative permittivity and conductivity), which are
taken into account in the computations. In addition, several
parameters, such as the AS, the maximum number of reflec-
tions, the individual radius of the receiver spheres and so on,
can be configured.

Novel online duplicate ray removal. Multiple counting of
received rays is a major problem of the ray-launching ap-
proach [31]. Removal of duplicates usually requires setting a
receiver sphere radius dependent on the ray unfolded distance
and keeping a log of the ray paths to track the sequence of
hits and filter them in a post-processing phase, which is not
efficient in a parallel environment. We use a novel approach:
each ray stores in a single integer the sequence of environ-
ment elements (mesh faces) it hits, by using a combined hash
of the face identifiers. Each time a face is hit, the combined
hash is updated. Since this hash is guaranteed to be unique
for different sequences of faces, including permutations, it
is used to remove all the rays following the same sequence
except for the closest one to the receiver. Therefore, all hits on
a receiver, with hash and distance information, are stored and,
after tracing, are filtered directly on the GPU with the Thrust
parallel library [35]. It allows us to keep all the computations
on the GPU to leverage parallel computing.

Moving objects. Propagation simulation by ray launching
has usually been used for characterization of static environ-
ments, where the transmitter is kept fixed at a few positions
[16], mainly because of a lack of tools for proper representa-
tion of dynamical 3D environments and low performance of
the tracing process. On the contrary, ray tracing engines such
as OptiX have been primarily designed to obtain high perfor-
mance and quality rendering for interactive video games and,
as such, they are optimized for real-time changing scenes. By
leveraging them, Opal allows to dynamically add transceivers
and other objects and can actually bring real-time changes to
propagation simulators with acceptable accuracy and perfor-
mance. Even though GPU-based propagation simulation has
been described in several prior works [16], only authors of
[18] evaluate the performance of ray launching with moving
vehicles.

E. OMNET++ MODULES
A set of OMNET++ modules have been developed to provide
bidirectional coupling between the traffic and network sim-
ulator. First, a generic execution server replaces the default
OMNET++ scheduler with an external time scheduler which
advances simulation time and execute events only when
synchronization messages from the external simulator are
received. Every message coming from Veneris includes the
time as run by the external simulator in the header, so the

simulation advances at each received message. Second, a
Veneris Server derives from the generic execution server and
processes all the currently defined types of messages from
Veneris, creating and inserting new vehicle modules in the
simulation and updating the state of the active modules. In
addition, an Opal radio medium extends the INET framework
[7] by enabling Opal ray launching based propagation simu-
lation. In fact, Opal can be used as radio medium for a INET
simulation independently of Veneris. The Veneris server is
mainly used to build an Opal scene from a Unity scenario
and to update the state of vehicles in a hybrid simulation.

IV. VALIDATION
In this section we describe and discuss the validation tests we
have performed to the Veneris framework. There are three
key areas that need to be tested: the fidelity of the vehicle
dynamics, the recreation of realistic traffic flows and the
accuracy of the propagation simulation. In addition, general
results of the expected performance are provided, although a
thorough performance evaluation and comparison is left for
a future work.

A. VEHICLE VALIDATION
Two different tests have been performed in order to demon-
strate that the vehicle model is able to reproduce the behavior
of actual vehicles with enough fidelity. One of the tests
is aimed at validating longitudinal vehicle dynamics, while
the other deals with lateral dynamics. The VeDYNA vehicle
simulation software [34] has been used to compare the results
in both cases, replicating an existing test in VeDYNA into
Veneris. The same vehicle configuration has been used in the
two simulation environments for the equivalent parameters.
More specialized parameters only present in VeDYNA have
been left to their default values. The validation tests are
discussed in the following paragraphs. The first test is an
acceleration/deceleration test. At the beginning of the test,
the vehicle is in neutral gear and the accelerator pedal is
progressively pressed. After one second, when the pedal is
fully pressed, the first gear is engaged. As the car accelerates,
gears are shifted up just before the engine reaches its maxi-
mum revolutions per second. After thirty five seconds, the
accelerator pedal is released and the brake pedal is pressed,
reaching full pressure after one second and maintaining the
pedal pressed afterwards.

Figure 6 shows the longitudinal speed of the vehicle in
both simulation environments. It can be seen how the results
are very similar during the acceleration phase and nearly
identical during the braking phase with a Mean Absolute
Error (MAE), MAE = 1

N

∑N
1 |xi − yi| = 0.5594 m/s.

The acceleration differences come from the use of different
integration steps. Veneris, by default, uses 0.02 s for the inte-
gration step, which is not small enough to handle situations
with large torque transfers from the engine to the drivetrain.
This fact forces a reduction of the maximum torque that can
be transferred between them in order to avoid oscillations in
the rotational speed of the engine. In the test, this happens

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

0 10 20 30 40 50
−5

0

5

10

15

20

25

30

35

40

45

Time (s)

S
p
e
e
d
 (

m
/s

)

VeDYNA

Veneris

FIGURE 6: Acceleration-Deceleration profile

after the first gear is engaged, when the engine is rotating at
its absolute maximum speed while the wheels are motionless.
However, in typical traffic scenarios this should not happen,
as the driver behavior will be smoother. Decreasing the
integration time step would alleviate this issue, but it incurs
in high performance costs for only small accuracy gains.

The second test, the steering wheel step test, analyzes
the vehicle lateral response after a step input at the steer-
ing wheel. After starting the test, a proportional, integral,
derivative (PID) controller is used to reach and maintain a
target speed of 40 km/h. When the speed is stabilized, the
steering wheel starts turning at a rate of 300 degrees per
second until it reaches a final rotation of 100 degrees. Then,
the steering wheel is kept in this position. The execution of
this test required to make some minor adjustments to the car
setup. It was hard to match the behavior of the tires and the
wheel suspensions as they are defined by different parameters
in both simulation environments. These two components are
part of the PhysX component for the wheels and, therefore,
have not been modified to avoid this situation. For the tires,
the curves used to obtain tire forces were fine-tuned empiri-
cally. As for suspensions, the roll center had to be modified
to avoid oscillations with large integration steps.

Figure 7 shows the results of the steering wheel step test
together with the Mean Absolute Error. It can be seen that
the trajectories followed in Veneris and VeDYNA, although
not identical, are quite similar with a MAE=0.0834 m. The
Veneris vehicle has also a slightly higher yaw angle than
the VeDYNA. These differences are mainly due to the use
of different tire models and the difficulty of matching them.
On the other hand, the roll of the Veneris vehicle depicted in
the figure is smaller than the one measured with VeDYNA.
The reason for this is the aforementioned displacement in
the roll center of the wheels that had to be made because of
oscillations. This fact reduced the roll of the vehicle but it did
not affect the trajectory followed by the vehicle. In general, it
can be observed that our base vehicle has a realistic behavior.

Both longitudinal and lateral vehicle responses match well
those of VeDYNA. There are only minor differences between
them, which are explained by the use of a simpler model and
a larger integration time step, which is justified because it
results in a better performance.

B. TRAFFIC SIMULATION VALIDATION
The validation of the traffic-related behaviour of Veneris is
specially important, since users have to be confident that
Veneris provides an accurate recreation of real traffic. A first
approach would be to directly compare the Veneris results
with the SUMO results. Since SUMO is a well tested and
validated traffic simulator, if Veneris is able to reproduce the
results of SUMO, users should be confident about the validity
of Veneris. However, Veneris incorporate a more realistic
physical behaviour of the vehicle, and so this difference
should show up in the results, which may raise doubts about
whether the simulator is flawed or the results are correct and
the disagreement comes from the models themselves. So, we
resort to an additional experimental data source as follows.

Since the validation of synthetic mobility traces is dif-
ficult, as discussed in the Section II, mainly due the lack
of available real traces, we have followed the methodology
proposed in [23] based on publicly available data. We use
the navigation and directions service provided by Google
[24]. The results provided by such services are based on a
number of real sources and return accurate values that can be
retrieved with dedicated APIs. In particular, the Google API
returns different travel times according to the departure time
and some predefined traffic models: optimistic, pessimistic
and bestguess, which indicates that it takes into account the
potential congestion for different periods of the day.

Since the results obtained from these sources are given by a
typical situation in the urban area we are interested, it is clear
that the scenario to be compared against them needs to be of
a relatively large size and with a realistic traffic demand, in
order to match the real conditions. This allows also to test the
quality of the traffic demands generated for some scenarios,
as we discuss later. However, as pointed out in [21] there is
a lack of freely-available and properly working scenarios for
SUMO as well.

In the following, we discuss first our methodology for the
validation and afterwards the results obtained.

1) Selection of the scenario and traffic demand
Some real mobility traces of highway scenarios are publicly
available, see [22] for a recent discussion. But, since Veneris
is not suitable at the moment for highway simulation due to
its lack of discretionary lane changing model, we focus on
urban scenarios. Very few scenarios are available and most
of them have problems [21]. Only four of them are linked in
the SUMO website. The Luxembourg (LuST) scenario [21]
is the most complete and well-developed one. However, with
more than 5600 edges and more than 70000 vehicles over
24 hours, it cannot be simulated as a whole with Veneris. It
must be remarked here that the network size can perfectly

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

0 2 4 6 8 10 12 14 16 18
−1

0

1

2

3

4

5

6

X pos(m)

Y
 p

o
s
(m

)

Veneris

VeDYNA

(a) Vehicle trajectory comparison. MAE=0.0834 m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

Y
a
w

 (
ra

d
)

Veneris

VeDYNA

(b) Vehicle yaw comparison. MAE=0.0293 rad.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

Y
a
w

 r
a
te

 (
ra

d
/s

)

Veneris

VeDYNA

(c) Vehicle yaw rate comparison. MAE=0.0292 rad/s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time (s)

R
o
ll

(r
a
d
)

Veneris

VeDYNA

(d) Vehicle roll comparison. MAE=0.0039 rad.

FIGURE 7: Steering wheel step tests results.

be handled by Veneris, but the traffic demand is too large,
that is, the number of simultaneously running vehicles can
rise up to 4000. The Bologna Ringway dataset described
in [23] is also available, but as warned in the SUMO web-
site, it is not working properly: it has unsafe traffic lights
which results in collisions. Another large scale scenario is
the TAPAS/Cologne. Nevertheless, as also warned in the
SUMO website, the scenario is hardly usable due to several
problems.

So, we finally resorted to the Bologna scenario [36]. The
scenario was built as part of the iTETRIS project [37]. This
package provides two scenarios, the Andrea Costa and the
Pasubio areas which can be joined together in a larger area.
We have used the Pasubio area, which has a reasonable size,
with 111 edges, 65 junctions and 16 traffic lights, and more
importantly, the size of the traffic demand is suitable: just one
hour at the morning peak hour, from 8:00 to 9:00, with 8680
trips. A snapshot of the simulated scenario is shown in Fig.
8.

FIGURE 8: The Pasubio scenario from Bologna. Snapshot
from Veneris.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

SUMO is able to simulate the complete traffic demand
and its results show only moderate congestion. On the con-
trary, with Veneris, the simulation of the 100% of the traffic
demand (8680 trips) results in a highly congested scenario
which in turn heavily degrades the performance of the sim-
ulator. Therefore, we reduced the traffic demand to 30%
(2893 trips) and 50% (4340 trips) of the original demand by
uniformly removing trips, which improves both the results
and the performance, as we discuss later in this section.

2) Navigation services

Following the approach in [23], we have retrieved trip du-
ration from available navigation services. We have used the
Google Maps Directions API [24]. We can ask for the route
from an origin to a destination and the service returns the
recommended route, together with additional information, in
particular, the route length and the duration. Intermediate
waypoints can be provided as part of the query and the
service returns a route passing by these intermediate points.
The Google Maps API also allows to indicate the departure
time and a traffic model among optimistic, pessimistic and
bestguess. According to the description of the service, speci-
fying the departure time allows to receive a trip duration that
takes the traffic conditions into account. Moreover, live traffic
becomes more important the closer is the departure time to
the actual time.

We have used the 50% traffic demand of the Bologna
scenario and all the trips have been converted to Google Maps
queries, generating a total of 4189 replies. The routes gath-
ered are equal in most of the cases to the routes used by the
vehicles in the simulator. In a few cases, the routes generated
are slightly different from the ones used in the simulator,
either because some minor roads are not modelled in the
simulator or due to differences in the map information with
respect to the converted network. We ask for the pessimistic
and bestguess traffic models and the departure time has been
set to 8:30 hours, but queried in the evening to avoid results
too close to a particular day live traffic.

3) Results

The durations of the collected trips for the simulations and
the navigation services, for the 50% and 30% of traffic
demand, are shown in Fig. 9. As can be seen, with a 50%
traffic demand, that is, aproximately 4000 vehicles/hour,
Veneris shows signs of traffic congestion, which is neglected
in the results of the bestguess model of Google Maps, while
SUMO does not show congestion and the durations are
clearly shorter than those provided by Google. However, the
results for the pessimistic Google model match better the
ones provided by Veneris, though the latter still shows more
dispersion due to congestion. In fact, when we compare sam-
ple to sample the trip durations with the MAE, summarized
in Table 1, we see that the MAE for Veneris with respect to
Google Maps pessimistic is clearly lower than the one for
SUMO, showing better coincidence.

TABLE 1: Mean Absolute Error (MAE) in m/s between
Google Maps bestguess (G-bg) and pessimistic (G-pes),
SUMO (S) and Veneris (V)

Traffic demand V-G bg S-G bg V-G pes S-G pes
50% 2.194 2.673 2.13 5.37
30% 1.62 2.80 3.53 5.42

TABLE 2: Cramér-von Mises Goodness of Fit test (p-value)
for Google Maps bestguess (G-bg) and pessimistic (G-pes),
SUMO (S) and Veneris (V)

Traffic demand V-G bg S-G bg V-G pes S-G pes
50% 0.0005 0.081 0 0
30% 0.61 0.12 0 0

TABLE 3: Veneris performance for the Pasubio Scenario

Metric 50% Traffic demand 30% Traffic demand
av. physics rate 28.75 cps 49.95 cps
av. frame rate 15.04 fps 57.87 fps

max active vehicles 600 227
av. active vehicles 317.07 156.67
real/simulated time 1.74 1.001

If we look at the results for a lower traffic demand, 30%
of the original one, we see that the results of Veneris agree
with Google Maps bestguess model closely, even better than
SUMO in fact. Both, the dispersion plot in Fig. 9c and the
MAE for Veneris with respect to Google Maps bestguess are
in better agreement than SUMO. On the contrary, neither
Veneris nor SUMO replicate the results of Google Maps
pessimistic in this scenario.

To further confirm this results, we have performed good-
ness of fit tests to the datasets. We tested the datasets in pairs,
that is, we have computed the Cramér von Mises statistic [38]
to test the null hypothesis that the pair of datasets come from
the same distribution, with a cutoff value of 0.05. The results
of the Cramér-Von Mises test for the datasets are summarized
in table 2.

We see that the null hypothesis is not rejected for SUMO
and Google Maps bestguess for the 50% traffic demand and
also for the 30% demand, whereas for Veneris it is not
rejected only for the 30% traffic demand. However, in this
latter case, the larger p-value supports a better match between
Veneris and Google Maps bestguess than SUMO. For the rest
of the cases the null hypothesis is rejected.

Finally, since this a relative large scenario, in terms of
traffic demands, we discuss the performance of the simula-
tor. Veneris performance metrics are shown in Table 3. In
Unity the physics simulation calls and the rendering calls
are separated. The simulated time advances in fixed steps,
every time the physics engine is called. That is why we have
separated the physics and the rendering (frame) rates in the
Table. Most of the simulator logic is implemented during the
physics calls, since we mainly use the physics library for
the vehicle implementation. From the point of view of the

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

Route length (m)

R
o

u
te

 d
u

ra
ti
o

n
 (

s
)

Veneris

SUMO

Google Maps bestguess

(a) Trip duration versus route length for 50% of traffic demand.
Veneris, SUMO and Google Maps with bestguess model

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

Route length (m)

R
o
u
te

 d
u
ra

ti
o
n
 (

s
)

Veneris

SUMO

Google Maps pessimistic

(b) Trip duration versus route length for 50% of traffic demand.
Veneris, SUMO and Google Maps with pessimistic model

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

Route length (m)

R
o

u
te

 d
u

ra
ti
o

n
 (

s
)

Veneris

SUMO

Google Maps bestguess

(c) Trip duration versus route length for 30% of traffic demand.
Veneris, SUMO and Google Maps with bestguess model

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

800

900

1000

Route length (m)

R
o

u
te

 d
u

ra
ti
o

n
 (

s
)

Veneris

SUMO

Google Maps pessimistic

(d) Trip duration versus route length for 30% of traffic demand.
Veneris, SUMO and Google Maps with pessimistic model

FIGURE 9: Validation of traffic model. Duration versus route length for the simulations (Veneris and SUMO) and the
navigations services (Google Maps Directions API)

simulation results, the frame rate is irrelevant. The frame rate
becomes important when the simulation is interactive, when a
human player is controlling some vehicle or providing some
user input. We have set the physics time step to 0.02 s which,
since Unity tries to advance the simulation time at a real-
time rate, means that the physics simulation is run 50 times
per second (calls per second, cps). The frame rate goal is set
to 60 frames per second (fps) by default. These goals are met
for the 30% traffic demand scenario, with almost 50 cps and
60 fps, which means it can be simulated without problems
in a fully interactive way. As shown, Veneris can handle
227 simultaneously running vehicles (max active vehicles
row) without noticeable degradation of performance for the
user. On the contrary, the 50% traffic demand scenario could
not be simulated interactively due to the degradation of
performance. A drop to 15.04 fps on average is perceived
by a user as unresponsive and unacceptably slow simulation.
But, let us remark, that for a non-interactive simulation,
the performance is perfectly reasonable, In this case a one-
hour simulated time only requires 45 additional minutes to

complete.

Let us summarize the results:

• The speed profiles for both SUMO and Veneris approxi-
mate well the real world ones according to Google Maps
models.

• Veneris shows clear congestion for the 50% traffic de-
mand, whereas for the 30% traffic demand the results
match the Google bestguess model better than SUMO.
This indicates that (1) the typical demand as computed
from the Google historical data is actually closer to the
30% rather than the full traffic demand of the scenario
and (2) that Veneris is able to provide as good as or
even more accurate results than SUMO. On the contrary,
SUMO tends to underestimate the duration of the trips
for all the traffic demands of the scenario.

• Veneris can be run in a fully interactive way for typical
real-world demands of the Pasubio scenario, the 30%
and 50% traffic demands, even though it cannot cope
with the (unrealistic) full demand.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

TABLE 4: Configuration parameters for the Chicago, two-ray
(TR) and street-crossing (SC) scenario.

Chicago TR-SC
Ray AS (degrees) 1 1/0.1

Max. number of reflections 10 2-5
Frequency (GHz) 5.875 5.9

Receiver sphere radius (m) 1 1/5
Relative permitivity (η) 3.75 (building),

1.02 (floor),
6 (vehicles)

3.75

Relative conductivity (σ) 0 0.038
Nakagami parameters m=0.75, path loss= 2.26 –
GEMV2 parameters NLOSb min. σ= 0 dB –

Polarization Vertical
Power 1 W

C. PROPAGATION VALIDATION
In this section we validate the simulation of propagation with
Opal. The configuration parameters used, unless other are
explicitly mentioned in the text, are shown in Table 4. We
use a ray sphere with both 1 degree and 0.1 degree of Angular
Spacing (AS), which result in 65160 and 6483600 rays traced
respectively.

1) Stand-alone validation
As a first step, Opal has been validated as a stand-alone
application, that is, Veneris is not used, and meshes are
loaded directly from Unity. A trivial test with a transmitter
and a receiver in free space has been performed, resulting
in perfect agreement with free space propagation. The first
non-trivial test involves a receiver and a transmitter over an
infinite plane, that is, a two-ray model, at different distances.
The height of transmitter is 10 m and receiver is 2 m and the
plane has been assigned brick material properties, according
to [39]. In this case, only a direct ray and one reflection
should hit the receiver. The results, compared with the exact
two-ray model computed with Matlab, are shown in Fig 10.
As can be seen, perfect matching with the theoretical model is
achieved with an AS of 0.1 degrees (MAE < 10−4 dB). More
importantly, this scenario tests our online duplicate filtering
algorithm: it correctly discards all the duplicate reflections
and keep the closest one. Let us remark that, with a AS=0.1
degrees, for instance, at 35 m, more than 4500 reflections hit
the receiver.

The second scenario is a street crossing, modeled with a
plane and four 40x40x40 m cubes, representing buildings,
as shown in Fig. 11. The receiver is placed at coordinates
(0,10,100)2, whereas the transmitter starts at (-50,10,50) and
moves 100 m along the X axis until the point (50,10,50),
transmitting every 1 m. Again the material chosen for plane
and buildings is brick. To validate this scenario we have
compared the Opal results with the results provided by a
3D Ray-tracing program implemented in Matlab [40]. It is
based on image theory and estimates the reflected, diffracted

2Unity uses a left-handed coordinate system, with height usually repre-
sented by the Y axis.

10
0

10
1

10
2

Distance (m)

-95

-90

-85

-80

-75

-70

-65

P
o
w

e
r

(d
B

W
)

Exact 2-ray model

Opal. Radius=1 m. AS=0.1 degree

Opal. Radius=5 m. AS=0.1 degree

FIGURE 10: Validation of two-ray model. Exact vs Opal
received power with 1 and 5 m of reception radius and 0.1
degree of AS.

FIGURE 11: The street crossing scenario. Transmitter (ar-
rows) and receiver (sphere) are at Y=10 m, building heigth is
40 m. Transmitter moves along the X axis from -50 to 50 m.

components and combinations thereof; it is also able to
compute single and double diffuse components. The envi-
ronment geometry is implemented with libraries specifically
programmed for the tool. The number of images computed
in a image-based tracer scales exponentially with the number
of reflections and faces in the environment. The execution
time of the Matlab tracer for 2 to 5 reflexions is 31, 59.4,
490.7 and 16227 s, respectively. For comparison, with Opal
the total time to run the tests took around 2.7 s for AS=0.1
degrees and around 0.4 s for AS=1 degree, independently of
the number of reflections. The results shown in Fig. 12 again
confirm that AS=0.1 degrees matches the Matlab results,
independently of the reception sphere radius: MAE=0.219
dB with radius=1 m and 5 reflections. There are differences,
especially in non line-of-sight (LoS) zones, for AS=1 degree
due to undersampling, but not large: MAE= 3.75 dB with
radius=5 m and 5 reflections. We also show the results for 4
reflections to remark that beyond this number of reflections
there is little difference in the results. The MAE for the other
combinations of number of reflections and radius is lower
than the previously mentioned one.

2) Hybrid simulation

For this scenario we have simulated a full unidirectional
simulation in a urban scenario. We have used an area from

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

-50 -40 -30 -20 -10 0 10 20 30 40 50

Position transmitter x-axis (m)

-125

-120

-115

-110

-105

-100

-95

-90

-85

-80

-75

P
o
w

e
r

(d
B

W
)

Matlab 4 reflections

Matlab 5 reflections

Opal 5 reflections AS=0.1 Radius=1

Opal 5 reflections AS=0.1 Radius=5

Opal 5 reflections AS=1 Radius=5

FIGURE 12: Validation of street crossing. Received power
for Matlab ray tracer and Opal with 1 and 5 m of reception
radius and 1 and 0.1 degrees of AS.

FIGURE 13: The Chicago downtown scenario. It has 235
roads, 21 traffic lights, 129 intersections and 163 buildings.

Chicago downtown, because it is a rich multipath envi-
ronment, due to its grid road network surrounded by tall
buildings, a picture is shown in Fig. 13. The validation
of propagation mechanisms implemented in Opal, basically
reflections, has been done in the previous subsections. In
this section we are interested in higher-layer metrics and
performance of a full unidirectional simulation with a pro-
tocol stack against a hybrid propagation model. We have
configured OMNET++/INET to simulate 802.11p network
interfaces at 5.875 GHZ, which is the carrier frequency of
the first channel in the 5.9 GHz DSRC band, with a data
rate of 6 Mbps and a periodic beacon generator on top
of it. We use 500 bytes beacons at 10 beacons/s for all
vehicles. We have generated a traffic demand that inserts 157
vehicles, one every 1.5 s, from the borders of the scenario.
The simulation runs for 738 s of simulated time, until all
vehicles have finished their routes and left the simulation.
The simulations have been replicated 5 times with differ-
ent seeds. We run Veneris with Opal propagation versus a
usual stochastic model, Nakagami-m, and an accurate hybrid
model, the implementation of GEMV2 [17] for OMNET++
from the Artery framework [41]. The parameters of the model
are shown in Table 4. The simulations have been run on a
commodity computer with an intel i5-6400 CPU, 16 GB of
memory and a NVIDIA GeForce GTX 970 GPU.

In Fig. 14 we show two relevant metrics for vehicular

TABLE 5: Average run time (s) for the Chicago scenario

Veneris-Opal GEMV2 GEMV2 ND Nakagami-m
4711.0 ± 11.68 16396.1 ± 191.5 9355.4 ± 10.28 608.7 ± 14.5

applications with their 95% confidence intervals. The average
inter-beacon reception time (IRT) and the average number of
neighbors are crucial for congestion control protocols [42]
and used as an indirect measure of the channel quality. As
can be seen, the use of a stochastic model such as Nakagami-
m, oblivious to the environment geometry, results in a large
overestimation of these two metrics. To remark the impor-
tance of using more accurate values for these metrics in
the design of higher layer protocols consider that congestion
control limits the beaconing rate, which in turn, decreases the
quality of the cooperative awareness basic service, on top of
which multiple CAD applications are built. On the contrary,
with geometry-aware models, such as GEMV2 and Opal,
the blocking effects of buildings are properly accounted for.
Even though GEMV2 incorporates propagations mechanisms
not implemented by Opal, such as diffraction, the results are
much closer: the MAE for the average IRT between GEMV2

and Opal is 0.039 s and the MAE for the average number
of neighbors is 5.5032. Since GEMV2 has been validated in
several works [17], [18], our results also validate Opal in its
current implementation. We left a more thorough validation
as a future work when we have added diffraction to Opal.

Regarding the performance, Veneris is able to simulate
the scenario in real time at 50 fps, as should be expected
since the number of active vehicles, with a maximum of 104
and a time average of 42.39, is lower than in the Pasubio
scenario in Sect. IV-B. As a unidirectional hybrid simulation,
the messages are serialized to a file and later fed to the
Veneris server in OMNET++. The average time to run the
simulations is shown in Table 5 together with the 95% confi-
dence interval. As can be seen, the computation of geometry-
based propagation results in an increase of computational
cost, whereas for a stochastic model the cost is not significant
and may be used in an interactive real-time simulation. Even
though GEMV2 is a simplified model, the average simulation
duration is 3.48 times longer than the Opal one. To provide
a fairer performance comparison with Opal, which does not
simulate diffraction, we have also simulated GEMV2 with-
out vehicle diffraction (GEMV2 ND): vehicle obstacles are
simulated as NLOSb [17]. In this case, GEMV2 simulations
still take 1.9 times longer than Opal ones. Overall, the results
show that ray-tracing propagation on GPU is a feasible and
practical approach for medium size scenarios with promising
potential.

D. CURRENT LIMITATIONS
Finally, we discuss here the current limitations of the Veneris
framework. Most of them can be overcome in future releases
as new functionality is added.

• Urban simulation. Although Veneris can be used for

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

0 20 40 60 80 100 120 140 160

Vehicle ID

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
v
e
ra

g
e
 I
R

T
 (

s
)

Opal

GEMV

Nakagami m=0.75

(a) Comparison of average IRT between GEMV2, Veneris with Opal
and Veneris with Nakagami-m propagation.

0 20 40 60 80 100 120 140 160

Vehicle ID

0

10

20

30

40

50

60

70

80

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
N

e
ig

h
b
o
rs

Opal

GEMV

Nakagami m=0.75

(b) Comparison of average number of neighbors between GEMV2,
Veneris with Opal and Veneris with Nakagami-m propagation.

FIGURE 14: Comparison of higher-layer results for unidirectional simulation with different propagation models.

simulating a highway, it lacks a discretionary lane
changing model, that is, a model where the driver moti-
vation to change lane is based on a perceived improve-
ment of the driving conditions. Such a model should
have a relevant influence on the simulation of high
capacity roads.

• Medium size scenarios. Veneris can handle interactive
traffic-only simulations with up to around 150 active ve-
hicles in real time. For hybrid simulations, interactivity
has to be given up for such a number of vehicles due to
the network simulation performance cost. But they can
be run in a reasonable time even with Opal propagation.
Moreover, interactive simulations using just OMNET++
stochastic propagation models can be run for scenarios
involving a hundred vehicles.

• No diffraction. Only reflections are simulated currently
with Opal. At least a simplified diffraction modeling
should be added and has been left as a priority addition
for future releases.

• Multiple parallel transmissions only for electromagnetic
characterization. Opal can simulate simultaneous trans-
missions in parallel. For instance, it may simulate a few
base stations and several hundreds of receiver locations
with a single launch. However, when used with OM-
NET++, only single-transmitter/multiple-receiver trans-
missions are computed due to the difficulty of integrat-
ing parallel transmissions with INET.

V. CONCLUSION
We have described and validated Veneris and Opal, a novel
hybrid traffic-network simulator implemented with a game
engine and a GPU ray tracer. Our tests show that it provides
realistic results in key aspects, such as vehicle and traffic
dynamics and propagation, that match specialized tools.

The more relevant features of the framework have been
briefly described and discussed in relation to the related
work. In particular, we have introduced a novel duplicate ray
filtering algorithm for ray-launching methods and adapted
the IDM and MOBIL models to a 3D environment as well
as developed a cost-based lane change selection mechanism.

In future works we plan to elaborate on these novel
features providing a detailed evaluation of the influence of
physically accurate models in traffic-related results. We are
currently implementing diffraction for Opal and intend to
validate its results with measurements. A more thorough
evaluation of the framework performance is planned in order
to optimize its operation as well as to test its potential for
interactive simulations.

REFERENCES
[1] J. Guanetti, Y. Kim and F. Borrelli,“Control of connected and automated

vehicles: State of the art and future challenges,” Annual Reviews in
Control, vol.45, pp. 18–40, 2018.

[2] K. C. Dey et al., “A Review of Communication, Driver Characteristics,
and Controls Aspects of Cooperative Adaptive Cruise Control (CACC),”
IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2,
pp. 491–509, 2016.

[3] A. Vahidi and A. Eskandarian, “Research advances in intelligent collision
avoidance and adaptive cruise control,” IEEE Transactions on Intelligent
Transportation Systems, vol. 4, no. 3, pp. 143–153, 2003.

[4] K. von Neumann-Cosel, M. Dupuis, and C. Weiss, “Virtual test drive
provision of a consistent tool-set for [d,h,s,v]-in-the-loop,” Proceedings
of the Driving Simulation Conference, Monaco, 2009

[5] M. Schiller, M. Dupius, D. Krajzewicz, A. Kern, A. Knoll, “Multi-
resolution Traffic Simulation for Large-Scale High-Fidelity Evaluation of
VANET Applications,” in Simulating Urban Traffic Scenarios,Behrisch
M., Weber M. (eds), Lecture Notes in Mobility, Springer, Cham, 2019.

[6] D. Krajzewicz, J. Erdmann, M. Behrisch and L. Bieker, “Recent Devel-
opment and Applications of SUMO – Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements, 5 (3,4),
pp. 128–138, 2012.

[7] INET, Open-source OMNET++ module suite for wired and wireless
mobile networks. [Online]. Available: https://inet.omnetpp.org/

[8] C. Sommer, J. Härri, F. Hrizi, B. Schünemann and F. Dressler, “Simulation
Tools and Techniques for Vehicular Communications and Applications,”
in , Vehicular ad hoc Networks, C. Campolo and A. Molinaro and R.
Scopigno (eds), pp. 365–392, Springer International Publishing, 2015.

[9] I. Llatser et al., “Simulation of cooperative automated driving by bidi-
rectional coupling of vehicle and network simulators,” IEEE Intelligent
Vehicles Symposium (IV) 2017, pp. 1881–1886, 2017.

[10] M. Segata et al., “Plexe: A platooning extension for Veins,” IEEE Vehicu-
lar Networking Conference (VNC) 2014, pp. 53–60, 2014.

[11] C. Garcia-Costa, E. Egea-Lopez, J. Garcia-Haro, “A stochastic model for
design and evaluation of chain collision avoidance applications,” Trans-
portation Research Part C: Emerging Technologies, vol. 30, pp. 126–142,
2013.

[12] T. Erez, Y. Tassa and E. Todorov, “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,”
International Conference on Robotics and Automation, 2015.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2908651, IEEE Access

E. Egea-Lopez et al.: Vehicular Networks Simulation with Realistic Physics

[13] M. Lewis and J. Jacobson, “Game engines,” Communications of the ACM,
45(1), pp. 27–31, 2002.

[14] Unity Engine. [Online]. Available: https://unity3d.com
[15] S. Santini et al., “A consensus-based approach for platooning with inter-

vehicular communications and its validation in realistic scenarios,” IEEE
Transactions on Vehicular Technology vol. 66(3), pp. 1985–1999, 2017.

[16] Z. Yun and M. F. Iskander, “Ray Tracing for Radio Propagation Modeling:
Principles and Applications,” IEEE Access, vol. 3, pp. 1089-1100, 2015.

[17] M. Boban, J. Barros, and O. K. Tonguz, “Geometry-based vehicle-to-
vehicle channel modeling for large-scale simulation,” IEEE Transactions
on Vehicular Technology vol. 63(9), pp. 4146–4164, 2014.

[18] M. Schiller, A. Knoll, M. Mocker and T. Eibert, “GPU accelerated ray
launching for high-fidelity virtual test drives of VANET applications,”
2015 International Conference on High Performance Computing and
Simulation (HPCS), Amsterdam, pp. 262–268, 2015.

[19] M. Treiber, A. Hennecke and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical Review E,
vol. 62, pp. 1805–1824, 2000.

[20] A. Kesting, M. Treiber, and D. Helbing, “General Lane-Changing Model
MOBIL for Car-Following Models,” Transportation Research Record,
1999(1), pp. 86-âĂŞ94, 2007.

[21] L. Codeca, R. Frank, S. Faye and T. Engel, “Luxembourg SUMO Traffic
(LuST) Scenario: Traffic Demand Evaluation,” IEEE Intelligent Trans-
portation Systems Magazine, vol. 9, no. 2, pp. 52–63, 2017.

[22] M. Gramaglia, O. Trullols-Cruces, D. Naboulsi, M. Fiore and M.
Calderon,“Mobility and connectivity in highway vehicular networks: A
case study in Madrid,” Computer Communications, Volume 78, pp. 28–
44, 2016.

[23] L. Bedogni, M. Gramaglia, A. Vesco, M. Fiore, J. Härri and F. Ferrero,
“The Bologna Ringway Dataset: Improving Road Network Conversion in
SUMO and Validating Urban Mobility via Navigation Services,” IEEE
Transactions on Vehicular Technology, vol. 64, no. 12, pp. 5464–5476,
2015.

[24] Google Maps Directions API. [Online]. Available:
https://developers.google.com/maps/

[25] W. Qiu et al., “UnrealCV: Virtual Worlds for Computer Vision,” Proceed-
ings of the 25th ACM international conference on Multimedia (MM ’17),
pp. 1221–1224, 2017.

[26] D. Garcia-Roger et al., “5G multi-antenna V2V channel modeling with a
3D game engine,” 2018 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), Barcelona, pp. 284–289, 2018.

[27] S. Parker, et al., “OptiX: A General Purpose Ray Tracing Engine,” ACM
Transactions on Graphics, 29(4), Article 66, 2010.

[28] OpenStreetMap. [Online]. Available: https://www.openstreetmap.org
[29] NVIDIA PhysX. [Online]. Available:

https://developer.nvidia.com/gameworks-physx-overview
[30] Flatbuffers serialization library. [Online]. Available:

https://google.github.io/flatbuffers/
[31] Z. Yun, M. F. Iskander and Z. Zhang, “Development of a new shooting-

and-bouncing ray (SBR) tracing method that avoids ray double counting,”
IEEE Antennas and Propagation Society International Symposium, pp.
464-467 vol.1, Boston, MA, USA, 2001.

[32] D. Schramm, M. Hiller y R. Bardini, Vehicle dynamics, Springer, 2014.
[33] R. Rajamani, Vehicle dynamics and control, Springer Science & Business

Media, 2011.
[34] T. E. S. I. S. DYNAware, “veDYNA Vehicle Dynamics Simula-

tion in Real-Time: Overview,”. [Online]. Available: https://www.tesis-
dynaware.com/en/products/vedyna/overview.html

[35] N. Bell, J. Hoberock, “Thrust: A Productivity-Oriented Library for
CUDA,” in Applications of GPU Computing Series, eds. Wen-mei, W.
Hwu, GPU Computing Gems Jade Edition, pp. 359-371, Morgan Kauf-
mann, 2012.

[36] L. Bieker, D. Krajzewicz, A.P. Morra, C. Michelacci and F. Cartolano,
“Traffic simulation for all: a real world traffic scenario from the city of
Bologna,” Proceedings of SUMO 2014, pp. 15–16, 2014.

[37] Krajzewicz D. et al. “iTETRIS - A System for the Evaluation of Coop-
erative Traffic Management Solutions.” in Advanced Microsystems for
Automotive Applications 2010, Meyer G., Valldorf J. (eds), VDI-Buch.
Springer, 2010.

[38] T. W. Anderson, “On the Distribution of the Two-Sample Cramer-von
Mises Criterion,” The Annals of Mathematical Statistics, vol. 33(3), pp.
1148–1159, 1962.

[39] Recommendation ITU-R P.2040-1, “Effects of building materials and
structures on radiowave propagation above about 100 MHz”, 2015.

[40] M. Martinez-Ingles, D. P. Gaillot, J. Pascual-Garcia, J. Molina-Garcia-
Pardo and M. Lienard and J. Rodriguez, “Deterministic and Experimental
Indoor mmW Channel Modeling,” IEEE Antennas and Wireless Propaga-
tion Letters, vol. 13, pp. 1047–1050, 2014.

[41] R. Riebl, H. J. Günther, C. Facchi, and L. Wolf, “Artery: Extending veins
for vanet applications,” 2015 International Conference on Models and
Technologies for Intelligent Transportation Systems (MT-ITS), pp. 450–
456, 2015.

[42] E. Egea-Lopez and P. Pavon-Mariño, “Distributed and Fair Beaconing
Rate Adaptation for Congestion Control in Vehicular Networks,” IEEE
Transactions on Mobile Computing, vol. 15, no. 12, pp. 3028–3041, 2016.

16 VOLUME 4, 2016

